Fully Convolutional Crowd Counting on Highly Congested Scenes
نویسندگان
چکیده
In this paper we advance the state-of-the-art for crowd counting in high density scenes by further exploring the idea of a fully convolutional crowd counting model introduced by (Zhang et al., 2016). Producing an accurate and robust crowd count estimator using computer vision techniques has attracted significant research interest in recent years. Applications for crowd counting systems exist in many diverse areas including city planning, retail, and of course general public safety. Developing a highly generalised counting model that can be deployed in any surveillance scenario with any camera perspective is the key objective for research in this area. Techniques developed in the past have generally performed poorly in highly congested scenes with several thousands of people in frame (Rodriguez et al., 2011). Our approach, influenced by the work of (Zhang et al., 2016), consists of the following contributions: (1) A training set augmentation scheme that minimises redundancy among training samples to improve model generalisation and overall counting performance; (2) a deep, single column, fully convolutional network (FCN) architecture; (3) a multi-scale averaging step during inference. The developed technique can analyse images of any resolution or aspect ratio and achieves state-of-the-art counting performance on the Shanghaitech Part B and UCF CC 50 datasets as well as competitive performance on Shanghaitech Part A.
منابع مشابه
CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes
We propose a network for Congested Scene Recognition called CSRNet to provide a data-driven and deep learning method that can understand highly congested scenes and perform accurate count estimation as well as present highquality density maps. The proposed CSRNet is composed of two major components: a convolutional neural network (CNN) as the front-end for 2D feature extraction and a dilated CN...
متن کاملDecideNet: Counting Varying Density Crowds Through Attention Guided Detection and Density Estimation
In real-world crowd counting applications, the crowd densities vary greatly in spatial and temporal domains. A detection based counting method will estimate crowds accurately in low density scenes, while its reliability in congested areas is downgraded. A regression based approach, on the other hand, captures the general density information in crowded regions. Without knowing the location of ea...
متن کاملCrowd counting via scale-adaptive convolutional neural network
The task of crowd counting is to automatically estimate the pedestrian number in crowd images. To cope with the scale and perspective changes that commonly exist in crowd images, state-of-the-art approaches employ multi-column CNN architectures to regress density maps of crowd images. Multiple columns have different receptive fields corresponding to pedestrians (heads) of different scales. We i...
متن کاملBeyond Counting: Comparisons of Density Maps for Crowd Analysis Tasks - Counting, Detection, and Tracking
For crowded scenes, the accuracy of object-based computer vision methods declines when the images are lowresolution and objects have severe occlusions. Taking counting methods for example, almost all the recent state-of-the-art counting methods bypass explicit detection and adopt regressionbased methods to directly count the objects of interest. Among regression-based methods, density map estim...
متن کاملImage Crowd Counting Using Convolutional Neural Network and Markov Random Field
In this paper, we propose a method called Convolutional Neural Network-Markov Random Field (CNN-MRF) to estimate the crowd count in a still image. We first divide the dense crowd visible image into overlapping patches and then use a deep convolutional neural network to extract features from each patch image, followed by a fully connected neural network to regress the local patch crowd count. Si...
متن کامل